When multiple agents operate simultaneously on trading operations, they must share a consistent understanding of the world state. This post explores the coordination patterns that make multi-agent trading systems reliable: persistent state management, conflict resolution, and multi-agent RAG for comprehensive analysis.

Read More

When building an AI hedge fund, the most critical element is understanding the flow of agent-to-agent communication. Does one agent need to work after another? Can agents work in parallel? What is the specific purpose of each agent? Multi-agent architecture answers these questions by defining specialized agents, shared state communication, orchestration patterns, and routing strategies that together create reliable, intelligent trading systems.

Read More

Financial agents need two critical capabilities that set them apart from simple chatbots: the ability to ground responses in authoritative documents through intelligent retrieval, and continuous evaluation to ensure accuracy in regulated environments. Agentic RAG transforms retrieval from a passive lookup into an active reasoning loop, while long-term memory enables personalization across sessions. Together with robust evaluation frameworks, these capabilities create production-ready financial assistants.

Read More

Agents become truly useful when they stop just reasoning and start acting - interacting with real systems like market data feeds, financial news sources, and internal databases. This shift happens through three key integration patterns: external APIs for real-time data, web search for unstructured information, and database connections for structured internal data. Mastering these patterns transforms agents from conversational tools into operational financial systems.

Read More

LLMs are stateless by nature - each interaction is isolated, with no memory of prior prompts. But financial agents often need context to manage complex, multi-step tasks like loan approvals, insurance claims, or trading workflows. This requires two complementary mechanisms: state for tracking execution progress, and memory for maintaining conversational context across interactions.

Read More

Language models are strong at reasoning, but without tools, they can only talk - not act. For financial applications requiring precise calculations, real-time data access, or system integrations, tool-augmented agents are essential. Combined with structured outputs using Pydantic, we can build reliable financial systems that guarantee data format compliance.

Read More

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×